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Abstract  
The accuracy of model output increases with a decreasing support size of the input data, due to the increase of 
detail. This paper examines whether this is true for various spatial models developed for simulating rockfall. We 
analyze the effect of the support size on the accuracy of a set of models and their parameters. Both calibration 
and validation data were obtained from real-size rockfall experiments in France, where high-speed video 
cameras recorded the trajectories and velocities of more than 200 individual falling rocks with diameters 
between 0.8 and 1.5 meter. The second validation set was obtained in the Austrian Alps. Here we mapped 
rockfall impacts on trees to obtain the spatial distribution of rockfall impacts throughout the study site. These 
observed data are thoroughly compared with the output of a rockfall simulation model. One of the main findings 
is that a larger support size can be a more important cause of a larger model error than poor data quality. 
 
1. Introduction 
To sustain and protect today’s livelihoods in the European Alps, protection forests are indispensable. Such 
forests cover the steep slopes of the main valleys and protect these developed and densely populated areas 
against snow avalanches, rockfall, debris flows and indirectly against flooding. Without these forests, the costs 
of building and maintaining technical protective constructions would be unaffordable. For these forests to 
provide optimal protection, adequate forest management is required (Motta and Haudemand 2000; Brang 2001. 
Spatial models that simulate natural hazards and integrate the protective function of forest stands can help to 
improve management decisions. The usefulness of such models however depends on the degree of model 
simplification. This in turn, depends on the availability and quality of input data, which are often determined by 
the feasibility of measuring the inputs with sufficient detail. Clearly, it is more difficult to obtain detailed terrain 
data for large catchments than for a small monitoring plot. Therefore, models and their input and output data are 
usually less detailed when moving up from a smaller to a larger spatial scale (Heuvelink 1998). Uncertainties or 
errors of model outcomes are thus related to spatial scale, of which one factor is the ‘support’ of the model input 
data. Here, support is defined as the largest area treated as homogenous such that an average value of the 
property of interest is known but not the variation within (Bierkens et al. 2000). If the model uses data on a large 
support, errors in the model outcomes could increase due to the loss of terrain information. The input data for a 
model should be of sufficient detail to capture the spatial variation that is essential to describe the process or 
pattern being modeled (Goodchild 2001). In some cases, however, the same model can be used for both a small 
and a large spatial scale, only the support of the input data may change. 
 
In this paper we focus on a distributed model that simulates rockfall in forests at the slope scale, which was 
designed to use input data with a support of 2.5m × 2.5m. Our main objective was to analyze whether it is 
realistic and feasible to use this model for a larger scale (e.g. regional scale, for a study area covering 500 km2), 
using input data on a support of 25m × 25m. The larger support data is of poorer quality because it has less 
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detail and involves a reduced sampling or mapping effort. We anticipated that the model using data with a 
support of 25m × 25m would produce a larger error than that used on a support of 2.5m × 2.5m. Our hypothesis 
was that poor data quality is the main cause of a larger model prediction error rather than the effect of 
simulating a similar process on a larger support. This hypothesis will be tested using a spatial rockfall 
simulation model and validation data coming from two typical forested slopes in the European Alps. 
 
2. Rockfall modeling and validation 
The rockfall model used in this study has been developed by Dorren et al. (2004). It is a spatial process based 
model developed for predicting 1) runout zones of rockfall events on both forested and non-forested slopes, 2) 
trajectories, velocities and energies of falling rocks and 3) impacts against tree stems and the accompanying 
energy loss. Model input data are raster based and include a Digital Elevation Model (DEM), a raster containing 
values for the tangential and one for the normal coefficient of restitution and rasters for the tree distribution 
(position and diameters). The DEM was used to determine the mean slope gradient and the fall direction and 
therefore it determines the acceleration and deceleration as well as the trajectory of a falling rock. The 
coefficients of restitution determined the amount of energy lost during a rebound on the slope surface. The 
tangential coefficient of restitution (rt) determines energy loss parallel to the slope surface (due to surface 
roughness or vegetation) and the normal coefficient of restitution (rn) determines energy loss perpendicular to 
the slope surface (due to elasticity of the material covering the slope surface). In the literature, a wide range of 
values exists for these parameters for many different types of surface cover material (Pfeiffer and Bowen 1989; 
Kobayashi et al. 1990; Giani 1992; Azzoni et al. 1995; Chau et al. 1998, 2002; Dorren and Seijmonsbergen, 
2003). 
 
The study of Dorren et al. (2004), which was carried out in the Austrian Alps, showed that their model can quite 
accurately predict rockfall runout zones, as spatial patterns of rockfall accumulation zones mapped in the terrain 
were reproduced by the model with an R2 of 0.74. Data on observed velocities and energies were not available 
for the site in Austria. Currently, however, these have been obtained from real-size rockfall experiments on a 
forested slope in the French Alps in the framework of the ROCKFOR project (ROCKFOR 2004). These 
experiments are visualized in figure 1. In short, we threw large, individual rocks (sphere type rocks with a mean 
diameter of 0.5 meter) down a forested slope with a mean gradient of 38 degrees. By using field measurements 
(laser vertex) and video cameras we captured the velocity and the trajectory of the rock in 3D. From these 
experiments we obtained the data presented in table 1. This table also presents the available simulation results 
obtained with our rockfall simulation model using data on a support of 2.5m × 2.5m, except for the forest input 
data (tree positions and diameters) which were on a support of 0.5m × 0.5m. The mean error (ME) and the mean 
squared error (MSE) of the output are calculated following: 
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Where n is the number of observations, Pi is the simulated or predicted value and Oi is the observed value, 
which is obtained from the experimental data. The ME and the MSE are calculated on the basis of errors of 
different observations that are presented in table 1. The variation in the results of all the individual rockfall 
experiments is very large, which underlines that rockfall on forested slopes is a stochastic phenomenon. 
Moreover, we were able to carry out 102 individual rockfall experiments on a forested slope during the last two 
years. The model uses Monte Carlo simulations (Lewis and Orav 1989; Mowrer 1997) and consequently 
produces much more virtual rockfall trajectories than we ever could have observed during experiments. As a 
result, we cannot compare single observed trajectories with simulated ones and are thus forced to work with 
average values. 
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Figure 1. A) rocks are painted to leave marks after tree impacts and rebounds; B) a caterpillar throws the rocks down 
the slope; C) video cameras are installed along the slope to record the trajectory in 2D; D) a rock accelerating in the 
first meters; E) after each individual rockfall experiment, we capture its trajectory to obtain a 3D trajectory; F) Example 
of the camera view; G) forty observed rockfall trajectories; H) example of video image analysis providing the rockfall 
velocity and a 2D trajectory; I) observed (white) and simulated (gray) histograms of the number of tree impacts per rock.     
 
The results presented in table 1 and figure 1-I show that our rockfall model produces acceptable results (ME = 
0.01% and MSE = 171.93%). The larger errors are produced by the maximum velocity and by the residual risk 
of the forested area. The residual risk indicates the percentage of rocks that cannot be stopped by the forest. On 
the test site, this forest covered the upper 150 meters of the experimental slope. The model was capable to 
accurately simulate the percentage of rocks that stop on the experimental slope as a whole (observed 79% and 
simulated 79%). In addition, the model reproduced very well the average number of tree impacts as well as the 
spatial pattern of the observed rockfall trajectories shown in figure 1-G. Having obtained confidence in the 
developed model, our next step was to test it using input data on a support of 25m × 25m with different data 
qualities at a different site in the European Alps. Initial simulation with data on a support of 25m × 25m from 
the French site indicated that the same model can be used. Moreover, the runout zone was quite accurately 
reproduced, but simulated tree impacts and rockfall velocities differ significantly from our observations. 
Consequently, we would like to know which parameter is responsible for the larger errors and has to be 
improved in order to carry out rockfall assessment at a regional scale. 
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Table 1. Observed and simulated characteristics of rockfall on forested slopes.  
Variable Explanation Observed Simulated  

 
Error (%) 

Mean velocity Average translation velocity in 
the forest [m/s] 

8.2 8.8 7.3% 

Max. velocity Maximum translation velocity 
in the forest [m/s] 

23.9 28.7 20.1% 

Runout zone Percentage of rocks stopping 
within 175 m [%] 

79% 79% 0 

Residual risk of forest Percentage of rocks passing the 
forested zone [%]   

34% 25% -26.5% 

Tree impacts Mean number of tree impacts 
per falling rock [-] 

2.3 2.4 4.3% 

Mean impact height Mean height of impacts on 
trees [m]  

0.77 0.73 -5.2% 

   Mean error: 
Mean squared error: 

0.01% 
171.93% 

 
 
3. Model simulations with different support sizes 
Both the input data and the validation data for the following model tests were obtained from a forested, active 
rockfall slope in the most western part of the Austrian Alps, located at 47°00´ latitude and 10°01´ longitude. 
This test slope could be divided in two areas. The rockfall source area, which is a steep cliff face dissected by 
large denudation niches and an accumulation area, a large post-glacially developed talus cone consisting mainly 
of rockfall scree, but also some debris flow material. The mean slope gradient in the source area is approx. 70 
degrees and in the accumulation area 38 degrees. The slope length of the talus cone is 900 meters. An overview 
of the site is shown in Figure 2. 
 

 
 

Figure 2. Photograph of the study site; the white outline 
 represents the site used for simulation modeling. 
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Table 2. Input data for the three simulation schemes, and their origin.  
Simulation 
scheme 

Support DEM Tree distribution rt rn 

1 2.5m × 2.5m 
HR 

Contour lines 
 

Orthophotos + 
detailed inventory 

Detailed field map 
+ literature 

Detailed field map 
+ literature 

2 25m × 25m HR*  Aggregated from 1 Aggregated from 1 Aggregated from 1 Aggregated from 1 
3 25m × 25m 

LR 
Photogrammetry Landsat TM + 

regional inventory 
Landsat TM + 
literature 

Landsat TM + 
literature 

HR = High resolution, large support 
HR* = HR data aggregated to 25m × 25m support 
LR = Low resolution, small support 
 
A set of different simulation schemes was defined to analyze the effect of input data with different aggregation 
levels on the accuracy of the output. In simulation scheme 1, input data with a support of 2.5m × 2.5m (high 
resolution –  HR) were used. The output was aggregated to a support of 25m × 25m by averaging the values of 
the output on the 2.5m × 2.5m support. The output data were compared with validation data at the same support. 
These validation data were extracted from detailed forest inventory data. On the upper part of the accumulation 
area of our test site, 18 squares of 25m × 25m were selected randomly. For these 18 squares the number of rock 
impacts scars per tree volume were measured. These data were compared with the number of rock impacts on 
trees as simulated by the model. For standardization purposes, both the validation data (observed values) and the 
simulated data (predicted values) in the 18 squares were expressed as percentages of the summed values for all 
the randomly selected squares. In simulation scheme 2 the same input data were used as before, but they were 
aggregated to a support of 25m × 25m prior to running the rockfall model (high resolution data aggregated –  
HR*). In simulation scheme 3 the support of data was the same as in scheme 2, but the input data for simulation 
scheme 3 were obtained directly at a support of 25m × 25m (low resolution data – LR). Since the data used in 
simulation scheme 3 were obtained at the regional scale, and thus less detailed than the data used in simulation 
scheme 1 and 2, we can state that the quality of this data was considerably poorer. An overview of all the used 
input data is given in table 2. Further details on the data acquirement as well as on the used methods are 
described by Dorren and Heuvelink (2004). To test the effect of aggregation of individual parameters, we 
applied additional simulation schemes in which HR and LR data were mixed. These schemes and their produced 
errors are explained in table 3. 

 
4. Results of the simulation schemes 
Comparison of the simulated impacts with the number of observed scars per unit tree volume provided the 
results shown in Table 3. Of the three initial simulation schemes, number 2 produced the largest errors and 
simulation scheme 1 the smallest errors. The latter is caused by a more accurate estimation of the larger 
observed values, which is shown by figure 3. Nevertheless, simulation scheme 1 also produced some 
considerable mismatches of the smaller observed values. The latter affects the mean squared error considerably 
for simulation scheme 1 (MSE1), as shown in Table 4 (MSE1 = 24.9). 
 
Table 3. The MSE of ‘intermediate’ simulation schemes 4 to 7 and the initial schemes 1, 2 and 3. 
Simulation scheme Used data  ME MSE 
1 HRtree, HRrn, HRrt, HRDEM 0.0 24.9 
2 HRtree*, HRrn*, HRrt*, HRDEM* 0.0 44.4 
3 LRtree, LRrn, LRrt, LRDEM 0.0 31.3 
4 LRtree, LRrn, LRrt, HRDEM* 0.0 47.8 
5 LRtree, LRrn, HRrt*, LRDEM 0.0 35.7 
6 LRtree, HRrn*, LRrt, LRDEM 0.0 31.4 
7 HRtree*, LRrn, LRrt, LRDEM 0.0 29.3 
* HR data aggregated to 25m × 25m support 
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Simulation scheme 2 produced the largest error (MSE3 = 44.4) and simulation scheme 3 produced an 
intermediate one (MSE2 = 31.3). The results presented in Table 3 show that the substitution of LRtree by the 
aggregated HRtree (simulation scheme 7) resulted in an MSE of 29.3, which is smaller than the initial MSE for 
scheme 3 (see also Figure 7a). Substitution of LRrt by the aggregated HRrt (simulation scheme 5) increased the 
MSE from 31.3 to 35.7. Table 2 also shows that the substitution of LRrn by the aggregated HRrn (simulation 
scheme 6) resulted in an increase of the MSE of 0.1, which indicates that the net effect of rn on the simulation 
results was small. A remarkable result is that the substitution of the LRDEM by the aggregated HRDEM 
(simulation scheme 4) did not decrease MSE3. On the contrary, it resulted in a large increase of the MSE from 
31.3 to 47.8. The scatter plot of this simulation result is shown in Figure 7b. This simulation scheme strongly 
overestimated the smaller observed values and strongly underestimated the larger observed values. 
 

 
 

Figure 3. Histograms of the errors produced by simulation schemes 1, 2 and 3 
 and accompanying scatter plots with observed values versus predicted values. 

 
5. Discussion 
We did not expect simulation scheme 3 to give a smaller MSE than scheme 2. Rather, we anticipated that 
scheme 3 would perform the worst, because it uses input data of the poorest quality. The only difference 
between simulation schemes 2 and 3 is the values for four model parameters, which have all been changed 
simultaneously. The ‘intermediate’ simulation scheme 4 indicated that the aggregated HRDEM was mainly 
responsible for the increase in error. In the test site, the rockfall trajectories are for a large part determined by a 
preferred transport channels or gullies. These are represented in both the HRDEM and HRtree, but they are 
averaged-out to a certain extent in the aggregated HRDEM but still represented. As a consequence, the fall 
directions calculated on the basis of the aggregated HRDEM were generally towards this channel, which led to a 
concentration of falling rocks. Therefore, the number of impacts is higher in that part of the study area. This 
effect is reinforced by the fact that the transport channel is almost free of trees. Therefore, hardly any rock 
impacts against trees occur in the channel in reality. However, when using the aggregated HRtree, the forest 
structure in the channel as observed in the field and in HRtree is completely lost. Consequently, the number of 
trees in the fall track of the simulated rocks, as represented by the aggregated HRtree, is overestimated, although 
the number of trees in the channel is still smaller than in the surrounding areas. As a result, the number of 
impacts in the channel is more strongly overestimated than in the other simulation schemes. This error occurred 
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to a lesser extent in simulation scheme 3, since in the LRDEM the channel was completely ’smoothed-out’. As a 
result a more uniform distribution of rock impacts was produced. 
 
Overall, the results indicate that the distributed rockfall model used in this study, which was developed for 
rockfall assessment at a slope scale, can be used for rockfall assessment at a regional scale. As expected, the 
analyzed simulation schemes indicated that input data with a support of 25m × 25m increased the MSE 
compared to input data with a support of 2.5m × 2.5m. However, the simulated maximum extents of rockfall 
runout zones were similar for simulation schemes 1, 2 and 3. In addition, these simulated maxima also 
corresponded with those observed in reality, which shows that modeling rockfall runout zones at the regional 
scale is feasible and realistic, even for forested catchments. The simulated rockfall impacts on tree stems using 
data with a support of 25m × 25m were not accurate as the mean squared errors produced by simulation 
schemes 2 and 3 were much larger than the MSE of scheme 1. Using tree distribution data of higher quality 
could reduce the MSE of scheme 3 with about 2% as shown by the ‘intermediate’ simulation scheme 7. The 
accuracies of the results produced by scheme 2 and 3 indicate that simulating damage on tree stems caused by 
rockfall using data with a support of 25m × 25m is not realistic. To assess where and how much tree stem 
damage will occur, high quality forest data with a small support is required. It is however possible to simulate 
rockfall runout zones with a support of 25m × 25m. 

 
6. Conclusions 
This paper investigated the relationship between the aggregation level of the input data and the accuracy of the 
output of a rockfall simulation model. The results showed that the simulation of rockfall with a distributed 
model using data with a support of 25m × 25m is feasible and realistic to simulate rockfall runout zones, but not 
for the simulation of tree damage caused by rockfall. The latter arose because collisions of rocks against tree 
stems cannot be simulated accurately where the data are of poor quality and the support is large. As anticipated, 
the model using data with a support of 25m × 25m produces a larger error than that using data with a support of 
2.5m × 2.5m. Our hypothesis was that poor data quality is a more important cause of a larger model prediction 
error than the effect of a larger support. This study showed that this is not necessarily true because the 
simulation scheme that used data of higher quality produced a larger error than the simulation scheme that used 
data of poorer quality. Here it was interesting to observe that the loss of important spatial structure in the input 
data (i.e. the rockfall channel represented in the slope map and in the tree distribution map), as caused by spatial 
aggregation, resulted in a larger model prediction error than the use of data that represented the landscape with 
less detail. The results of this study also indicate that the use of a regional DEM of high quality requires data on 
forest structure of higher quality than does a regional DEM of poorer quality in case of simulating rocks falling 
through mountain forests. It would be interesting to aim future rockfall modeling research determining the 
minimum support required to obtain realistic and trustworthy modeling results for the assessment of the degree 
of protection provided by mountain forests against rockfall hazards in the European Alps. 
 
Acknowledgements 
The funding by the European Community for the ROCKFOR project (QLK5-CT-2000-01302) and the financial 
support provided by the Niels Stensen Stichting is gratefully acknowledged. 
 
References 
Azzoni, A., Barbera, G.L. and Zaninetti, A. 1995. Analysis and prediction of rockfalls using a mathematical 

model. International Journal of Rock Mechanics and Mining Science, 32, 709-724. 
Bierkens, M.F.P., Finke, P.A., Willigen, P. De, 2000. Upscaling and downscaling methods for environmental 

research (Kluwer Academic Publishers, Dordrecht). 
Brang P. 2001. Resistance and elasticity: promising concepts for the management of protection forests in the 

European Alps. Forest Ecology and Management 145, 107-117. 
Chau, K.T., Wong, R.H.C. and Lee, C.F. 1998. Rockfall problems in Hong Kong and some new experimental 

results for coefficient of restitution. International Journal of Rock Mechanics and Mining Science, 35, 662-
663. 

Chau, K.T., Wong, R.H.C. and Wu, J.J., 2002. Coefficient of restitution and rotational motions of rockfall 
impacts. International Journal of Rock Mechanics and Mining Science, 39(1), 69-77. 



 8

Dorren, L.K.A. and Seijmonsbergen, A.C., 2003. Comparison of three GIS-based models for predicting rockfall 
runout zones at a regional scale. Geomorphology, 56(1-2), 49-64. 

Dorren, L.K.A. and Heuvelink, G.B.M., 2004. Effect of support size on the accuracy of a distributed rockfall 
model. Int. Journal of Geographical Information Science, in press. 

Dorren, L.K.A., Maier, B., Putters, U.S. and Seijmonsbergen, A.C., 2004. Combining field and modelling 
techniques to assess rockfall dynamics on a protection forest hillslope in the European Alps. 
Geomorphology, 57(3-4), 151-167.  

Giani, G.P. 1992. Rock Slope Stability Analysis (Balkema, Rotterdam). 
Goodchild, M.F., 2001. Models of scale and scales of modeling. In Modelling scale in Geographical 

Information Systems, edited by N.J. Tate and P.M. Atkinson (John Wiley & Sons, Ltd., Chichester), pp.3 – 
10.  

Heuvelink, G.B.M. 1998. Uncertainty analysis in environmental modelling under a change of spatial scale. 
Nutrient Cycling in Agroecosystems, 50, 255-264. 

Kobayashi, Y., Harp, E.L. and Kagawa, T. 1990. Simulation of rockfalls triggered by earthquakes. Rock 
Mechanics and Rock Engineering, 23: 1-20. 

Lewis, P.A.W. and Orav, E.J. 1989. Simulation methodology for statisticians, operations analysts, and engineers 
(Volume 1. Pacific Grove, Wadsworth & Brooks/Cole). 

Motta, R., Haudemand JC. 2000. Protective forests and silvicultural stability. An example of planning in the 
Aosta valley. Mountain Research and Development 20, 74-81 

Mowrer, H.T., 1997. Propagating uncertainty through spatial estimation processes for old-growth subalpine 
forests using sequential Gaussian simulation in GIS. Ecological Modelling, 98, 73-86. 

Pfeiffer, T.J. and Bowen, T.D. 1989. Computer simulation of rockfalls. Bull. Ass. Engineering Geologists, 
XXVI, 135-146. 

ROCKFOR, 2004. Rockfall forest interrelation – EC funded project on the efficiency of the protective function 
of mountain forests against rockfall. [online] URL: http://rockfor.grenoble.cemagref.fr/ 

    

Luuk.Dorren
Citation:Dorren, L.K.A., Berger, F. and Heuvelink, G.B.M., 2004. Effect of support size on the accuracy of spatial models: findings of rockfall simulations on forested slopes, Joint Meeting of The International Environmetrics Society and the Spatial Accuracy Symposium, 28 June - 1 July 2004, Portland, Maine, USA: 15 pp.




