Using GIS for preparing Rockyfor3D input data in 10 steps

Before starting, install QGIS (download from www.qgis.org) and SAGA GIS (download from www.saga-gis.org).

Step	Description
1	Make a hillshade map using a digital elevation model (DEM). This can be
	done either in SAGA GIS or in QGIS:
	1. In SAGA GIS, import your DEM or digital terrain model (DTM) via
	"Modules>File>Grid>Import>". After importing, the data will appear in
	the Data tab of the Workspace window under the heading Grid. Then,
	use "Modules>Terrain Analysis>Lighting>Analytical Hillshading". In the
	opened window select the input grid (the DTM) and subsequently set
	the Exaggeration value to 2, for creating a map with bright colours.
	Press Okay. After successful module execution, double-click the faster
	to visualise the billshade raster in a man. Then save the billshade as
	ESPL Arc/Info Grid using "Modules Files Grids Exports Export ESPL
	Arc/Info Grid" In the opened window select the input grid. For
	choosing the output file name, click in the empty cell to the right from
	"File". SAGA automatically adds the extension asc to the given file
	name. Other important settings: Format = ASCII. ASCII precision for
	integer type grids = 0, for double type grids precision = 2, ASCII
	Decimal Separator needs to be a point (.). Then click okay for
	exporting the grid.
	2. In QGIS, download the plugin hillshading and follow the instructions.
2	In QGIS, display the background you would like to use (created hillshade,
	orthophotos or slope map (a slope map can be created on the basis of the
	DTM in SAGA GIS, analogue to step 1.1, using <i>"Modules>Terrain</i>
	Analysis>Morphometry>Slope, Aspect, Curvature") to prepare the digitizing of
	the terrain polygons. Save the slope map as defined in step 1 (Careful !!! the
	slope angles are given in radians and not in degrees, multiply the grid by
2	180/pi() to calculate degrees using the grid calculator in SAGA GIS).
3	http://www.ocorisg.org/oponETP/PE3D_script zip) in OCIS using the monu
	"Laver>Add Vector Laver" or using the button "Add Vector Laver". The
	template terrain sho already contains the attribute structure that is needed for
	the different required rasters that will be created from it.
4	In QGIS, save the opened template terrain.shp in a new, specific project
	directory using the menu "Layer>Save as". Only fill in the name, keep the
	other settings as they were.
5	In QGIS, close the shapefile terrain.shp and open the newly created
	terrain.shp.
6	In QGIS, before one starts with set the project properties using the menu
	"Settings>Project Properties". In the "General" tab select your proper "Layer
	<i>units</i> " (e.g, Meters) and in the section " <i>Digitizing</i> " activate " <i>Enable topological</i>
	eaiting". In addition click "Avoid intersections of new polygons" and tick your
	snaperile terrain.snp. I nen click "Snapping options" and under Layer tick your
	snapefile terrain.snp; under Mode select to "to vertex and segment", under
	i orerance put the value it (or bill you want to be less precise of 0.5 If you

	want to be more precise) and under <i>Units</i> select <i>"man units"</i> Finally
	additional useful settings concerning digitizing, such as line colour, can be
	found in the manu "Settings Concerning digitizing, such as line colour, can be
7	To start digitizing in OGIS use the menu "I avers Toggle editing" To
1	successfully digitize your terrain polygons it is advisable to read Section 5.5
	of the Quantum GIS Liser Quide (tin: one can digitise one large polygon
	around the complete study area and cut this large polygon
	smaller ones: this avoids snanning and overlan problems of adjacent
	nolygons). After finishing digitizing a field polygon using a right mouse click all
	the attribute values of that polygon have to be completed. Do not forget to
	save your shapefile repeatedly and surely at the end before you finish editing
	using the same "Toggle editing" button. Now all the polygons are digitized
	and all attributes values are recorded. OGIS can be closed
8	Now using SAGA GIS, the shapefile terrain, projectarea shi has to be
0	converted into the grids required for Rockyfor3D. This can be done by hand
	or automatically using SAGA scripts, which can be downloaded from
	http://www.ecorisg.org/openETP/Terrainshp.zip.(see readme txt_the next
	steps 8 & 9 of this manual are not needed anymore)
	By hand, one has to load the shapefile using the menu upper left
	"File/Shapes/Load shapes" and browse for your shapefile. In the data tab
	(bottom left part of the window), it can be checked if the shapefile loaded well.
	Double-click on the shapefile opens it in a map.
9	Next, there are two possibilities:
	1. If your shapefile terrain_projectarea.shp covers the same or a bigger
	area as the DEM, the newly created rasters have to be adapted to the
	cellsize and the extent (area) of the DEM. First, make sure that none
	or all polygons are selected. If a single polygon is selected, only this
	one will be taken into account in the gridding procedure ! This can be
	done by opening the shapefile in a map, i.e. by double-clicking the
	filename of the shapefile in the data tab of the Workspace window.
	I hen select the black pointer tool and click somewhere outside the
	shapefile (see below).
	SAGA - [04. Map]
	-23400 -23300 -23200 -23100 -23000
	Then select menu "Modules/Grid/Gridding/Shapes to Grid" to start
	converting the shapefile. In the opened window "Shapes to Grid"
	select the attribute that will be used for the defining the cell values of
	the grid to be created. The target Grid Type should be set to Integer (2
	byte is mostly sufficient) or floating Point (4 byte). Target dimensions:
	- User defined: the user defines the cellsize and the number of rows
	and columns of the grid to be created

	- Grid project: the dimensions and cellsize of the grid to be created will
	be similar as the ones of an existing grid, which has to be selected in a
	second step
	 Grid: an existing grid will be overwritten, but its dimensions and
	cellsize will remain unchanged
	Press Okay and then, depending on your choice in the first window,
	the target dimensions of the new grid, or the existing grid project, or
	respectively the grid to be overwritten should be defined in the second
	window. Then press okay again and the grid will be created.
	2. If the shapefile terrain_projectarea.shp covers a smaller area as the
	DEM, firstly the shapefile has to be rasterised and secondly the
	existing DEM has to be adapted to the rasterised shapefile. First
	import the DEM by selecting "Modules/File/Grid/Import". There you can
	select your Grid type (e.g., Import ESRI Arc/Info Grid if you have an
	ASCII file with ESRI format header). Then select
	"Modules/Grid/Construction/Resampling" to start resizing the grid.
	Select the grid you want to resample in the Input field and then the
	characteristics of the new grid to be created using "Create new grid in
	existing project" The resulting grid will have the same characteristics
	as the grids of the specified project. That means that not only the cell
	size can be modified, but also the boundaries of the DEM will be
	adapted to the grids in the defined grid project.
10	If all required grids are finished and have the same cellsize and map extent
	(number of rows and columns), they can be exported as .asc raster files. As
	mentioned in the Rockytor3D paper, the minimum input data required by
	Rockytor3D consists of a set of 10 raster maps, which can be created using
	the menu "Modules/File/Grid/Export/Export ESRI Arc/Into Grid". In the
	opened window select the input grid. For choosing the output file name, click
	In the empty cell to the hight from the cell with the laber File. SAGA
	automatically adds the extension last to the given me hame. Other important
	Settings. For double (floating point 4 or 8 byte) type grids procision $= 2$ ASCII
	Decimal Separator needs to be a point (). Then click every for experting the
	arid Repeat this for all required arids and nav attention when choosing the
	arid to be exported and when giving the final filename
	giù to be exported and when giving the inial mename.

Good luck!

Luuk Dorren, 30.05.2012

(many more details on QGIS and SAGA GIS can be found in the software manuals, freely available on the respective websites).

