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The accuracy of rockfall trajectory simulations depends to a large extent on the calculation of the rebound of
falling boulders on different parts of a slope where rockfalls could occur. The models commonly used for
rebound calculation are based on restitution coefficients, which can only be calibrated subjectively in the
field. To come up with a robust and objective procedure for rebound calculation, a stochastic impact model
associated with an objective field data collection method was developed and tested in this study. The aims of
this work were to assess the adequacy of this approach and to evaluate the minimum amount of field data
required to obtain simulation results with a satisfactory level of predictability. To achieve these objectives,
the rebound calculation procedure developed was integrated into a three-dimensional rockfall simulation
model, and the simulated results were compared with those obtained from field rockfall experiments. For
rocky slopes, the simulations satisfactorily predict the experimental results. This approach is advantageous
because it combines precise modelling of the mechanisms involved in the rebound and of their related
variability with an objective field data collection procedure which basically only requires collecting the mean
size of soil rocks. The approach proposed in this study therefore constitutes an excellent basis for the
objective probabilistic assessment of rockfall hazard.
© 2009 Elsevier B.V. All rights reserved.
1. Introduction
As shown by the recent accidents occurring in March 2006 in the
French Alps and June 2006 on the Gotthard highway in Switzerland,
rockfall is one of themain natural hazards that pose risks to residential
areas, infrastructures, and populations in the Alps. Rockfall is generally
defined as the removal of individual boulders from a cliff face (Varnes,
1978; Whalley, 1984; Selby, 1993; Cruden and Varnes, 1996). This
study focuses on single falling rocks with a volume up to 1.3 m3. In
rockfall hazard assessment, trajectory simulation models are increas-
ingly used for designing protective measures such as nets and dams
(Descoeudres, 1997; Peila et al., 1998; Nicot et al., 2001, 2007) or for
making hazard maps (Kobayashi et al., 1990; Evans and Hungr, 1993;
Guzzetti et al., 2002; Chau et al., 2004; Jaboyedoff et al., 2005;
Bourrier, 2008; Frattini et al., 2008).

The most difficult process to simulate in such trajectory models is
the rebound, which describes the impact of the falling boulder on the
slope surface. To calculate such a rebound, a wide range of algorithms
is currently available, which are summarised in Guzzetti et al. (2002),
Dorren (2003), and Heidenreich (2004). Rebound deterministic
modelling remains highly speculative since the information available
on the mechanical and geometrical properties of the soil is not
sufficient to perform a relevant deterministic prediction of boulder
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rebound. In particular, the characterisation of the spatial distributions
of the parameters required for rebound calculation generally result
from a field survey which, for practical reasons, cannot be exhaustive.
Stochastic approaches have therefore been proposed (Paronuzzi,
1989; Pfeiffer and Bowen, 1989; Azzoni et al., 1995; Dudt and
Heidenreich, 2001; Guzzetti et al., 2002; Agliardi and Crosta, 2003;
Jaboyedoff et al., 2005; Bourrier et al., 2007, 2008b; Frattini et al.,
2008) to account for the variability of the rebound. Most of these
approaches are based on two parameters, both called restitution
coefficients, which proved to partially represent the complexity of the
rebound (Wu, 1985; Bozzolo and Pamini, 1986; Chau et al., 1998;
Ushiro et al., 2000; Chau et al., 2002; Heidenreich, 2004). The problem
is that stochastic variation of the restitution coefficients only account
for the variability related to terrain characteristics. Variability due to
the kinematics of the falling boulder is not accounted for. In addition,
estimating the values of these two parameters in the field is a difficult
task mainly based on literature values that are associated with certain
surface characteristics of the slope. Overviews of commonly used
values for restitution coefficients are given in (Paronuzzi, 1989;
Pfeiffer and Bowen, 1989; Azzoni et al., 1992; Azzoni and De Freitas,
1995; Chau et al., 2002; Agliardi and Crosta, 2003; Scioldo, 2006).
Most models are very sensitive to the values of these restitution
coefficients. In addition, the values in the literature vary significantly
for identical surface characteristics. The resulting subjectivity in the
choice of these parameter values therefore partly explains the large
variation in the results obtained when applying different models, or
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even the same model used by different operators, at the same site
(Interreg IIc, 2001; Berger and Dorren, 2006).

To overcome these difficulties, a more objective rebound calcula-
tion procedure based on a stochastic impact model was developed.
This proceduremodels the variability associatedwith the rebound and
only requires collecting a very limited set of field parameters: the size
of the falling boulder and the sizes characterising the rocks composing
the slope surface. Our first objective was to test and validate the
procedure developed. The second objective was to evaluate the
minimum amount of field data required to obtain simulation results
with a satisfactory level of predictability.

This paper first explains the rebound calculation procedure
developed and its integration into a three-dimensional rockfall
trajectory simulationmodel. Then the simulation results are compared
with those obtained from field rockfall experiments and discussed.

2. Full-scale rockfall experiments on a mountain slope

Full-scale rockfall experiments were carried out in an avalanche
track in the Forêt Communale de Vaujany in France (N. 45°12′, E. 6°3′).
The study area covers an Alpine slope ranging from 1200 to 1400 m
above sea level with a mean gradient of 38°. The experimental site is
part of a hillslope that is formed by a postglacial talus slope (Fig. 1),
downslope from rock faces consisting of the “Granite des Sept Laux”,
Fig. 1. A) Google Earth image of the area around Grenoble (France) and the location of the
C) picture of the study area from a facing slope; D) map of the study areawith an indication o
material; large dots=rough talus material, see Section 3.4), the position of the two evaluat
which belong to the crystalline Belledonne massif. The talus cone
mainly consists of rock avalanche, snow avalanche, and rockfall
deposits. The study site is ∼100 m wide and 570 m long (distance
between the starting point and the lower forest road, measured along
the slope). Between the starting point and the lower forest road, it has
the shape of a channel with a maximum depth and width of 2 and
10m, respectively. Since avalanches occur every year in this channel, it
is denuded of trees.

The protocol was identical for all rockfall experiments. Before
each boulder release, the volume of the boulder was measured and
the boulder was coloured with biodegradable paint so that it left
traces after rebounding on the slope. The volume was estimated
by measuring the height, width, and depth along the three most
dominant boulder axes and by assuming that the boulders were
rectangular. A total of 100 boulders were released individually, one
after the other. The mean volume was 0.8 m3, and the standard
deviation 0.15 m3 (Fig. 2).

A front shovel was used to release the boulders down the slope,
starting with a free fall of 5 m. As soon as the boulder stopped, the
impact locations and stopping points were captured with an Impulse
LR 200 laser distance meter manufactured by Laser Technology, Inc.
(Centennial, CO, USA). In addition, the rockfall trajectories were filmed
by five digital cameras, which were placed so that the camera planes
were perpendicular to the channel, which is the preferred rockfall
study area; B) location of the study area in the valley of the Eau d'Olle (Google Earth);
f 14 homogenous zones with different types of surface roughness (dense fine dots=fine
ion lines (EL1 and EL2), the release point and the 5 cameras.



Fig. 2. Experimental boulder volume distribution.

Fig. 3. Sequence of movie images.
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path, and 30 m away (Fig. 1). The cameras were fixed at a height of
10 m in trees. Additional details on the experiments are given in
Dorren et al. (2006).

The digital films of the 100 rockfall trajectories were analysed
using image processing software called AviStep 2.1.1 (developed by
M. Delabaere, St. Denis de la Réunion, France). This program extracts
the position and the velocity of a moving particle for each individual
image in a digital film using the following principle. First, in the first
image of each film, the field-measured rebound distances are
identified. Second, soil surface detection is conducted by linking the
successive impact points in the films assuming that soil surface is
linear between two impact points. Third, the two-dimensional
trajectory of each falling boulder was analysed using a sequence of
movie images (Fig. 3). Finally, the analysis of the movie images
provided the rebound heights, i.e., the maximum vertical distance
between the centre of the boulder and the slope's surface, as well as
the position of the boulder for every image (every 0.04 s). This makes
it possible to determine the velocity.

Since the resolution of the movie images did not allow for a
precisemeasurement of the rotational velocity, only the translational
kinetic energy Etrans was calculated to reduce the uncertainty in the
results. The translational kinetic energy Etrans of a falling boulder is
calculated as:

Etrans =
1
2
mbV

2 ð1Þ

where mb is the mass, and V is the translational velocity of the
boulder.

The experimental results therefore do not provide information on
either the rotational kinetic energy Erot or the total kinetic energy Etot,
which are defined as follows:

Erot =
1
2
Ibω

2 ð2Þ

and

Etot = Etrans + Erot ð3Þ

where Ib is the moment of inertia, and ω is the rotational velocity of
the boulder.

3. Trajectory simulation using a stochastic rebound algorithm

The simulation model used is the 3D rockfall trajectory model
Rockyfor3D, which has been developed since 1998 (Dorren et al.,
2006). This model simulates the rockfall trajectory in 3D by
calculating sequences of parabolic free fall through the air and
rebounds on the slope, as well as impacts against trees, if specified.
Rolling is represented by a sequence of short-distance rebounds and
sliding is not modelled. Falling boulders are represented in the
model by spheres using a hybrid approach. This means that, during
parabolic free fall, the falling sphere is represented by a single point
(lumpedmass) and, during the rebound calculation, by a real sphere.
The three major components of Rockyfor3D are 1) the parabolic
free fall calculation and its intersection with the topography,
2) the rebound calculation, and 3) the fall direction calculation
after rebound.

3.1. Parabolic free fall

The parabolic free fall is calculated with a standard algorithm for
a uniformly accelerated parabolic movement through the air. This
calculation determines the position and the normal (with respect
to the local slope) Vn

in, tangential Vt
in, and rotational ωin velocities

at the intersection with the slope topography, represented by a
Digital Elevation Model (DEM). As such, Rockyfor3D simulates a
3D trajectory by calculating the displacement of the boulder position
along the x-, y-, and z-axes (Fig. 4). Here, the z-axis corresponds
to its vertical position, the x-axis to the east–west direction, and
the y-axis to the north–south direction (Fig. 4A). By its x and
y coordinates, the 3D trajectory is linked to a set of raster maps with
a resolution between 1 and roughly 20 m. For this study, however,
the raster resolutionwas 2.5 m. The raster maps provide information
on the topography (DEM), the slope surface characteristics, and
the release points (for this study, only one release raster cell was
defined).

Knowing the position of the rebound and the slope surface
characteristics defined by the raster maps at this position, as well as
the velocities before rebound, the rebound calculation using the
stochastic impact model can be initiated.

3.2. Stochastic impact model

The rebound calculation determines the normal Vn
out, tangential

Vt
out, and rotational ωout velocities after rebound based on the

velocities before rebound, called incident velocities, and on the
parameters determining the energy loss during the rebound. The
reboundmodel initially integrated in Rockyfor3D (Dorren et al., 2006)
was replaced by a stochastic impact model that calculates the velocity



Fig. 5. Predictions of the mean values of the Rt and Rn coefficients v

Fig. 4. Example of A) the simulated rockfall trajectory plotted on a contour linemap (x–y
plan view); B) the trajectory in the x–z plane (z-axis corresponds to the vertical
direction); and C) the simulated velocity versus the x coordinate.
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vector after rebound Vout from the velocity vector before rebound Vin

following the expression:

Vout = AV in withVout =

Vout
t

Vout
n

ωout

2
664

3
775; A =

a1 a2 a3
a4 a5 a6
a7 a8 a9

2
4

3
5; V in =

V in
t

V in
n

ωin

2
664

3
775

ð4Þ

This means that each of the three velocities after rebound (Vt
out,

Vn
out, and ωout) is calculated with the three incident velocity

components (Vt
in, Vn

in, and ωin) and three coefficients of matrix A.
For example, the tangential component of the velocity after

rebound Vt
out is expressed as follows:

Vout
t = a1V

in
t + a2V

in
n + a3ω

in ð5Þ

The coefficients ai, as well as the correlations between them, are
characterised by normal probability distribution functions. These
allow the model to account for the high variability of the local slope
surface characteristics and the kinematics of the rebounding sphere.
Specific information can be found in Bourrier et al. (2007, 2008b).

Because of the defined inter-relationships between the outgoing
and incident velocity components, the stochastic impact model differs
completely from classical rebound algorithms. Most of these only use
a tangential Rt and a normal Rn restitution coefficient for different
slope surface types (see Guzzetti et al., 2002; Dorren, 2003), which are
defined by the user but are not related to all three incident velocity
components. Many authors have already revealed that this approach
introduces errors in rebound calculations. The Rt and Rn coefficients
are defined as follows:

Rt =
Vout
t

V in
t

ð6Þ

Rn = − Vout
n

V in
n

ð7Þ

Contrary to classical models, the restitution coefficients Rt and Rn
that can be recalculated from the velocities before and after rebound
as predicted by the stochastic impact model are not constant values.
They both depend on all the incident kinematic parameters and the
terrain characteristics. Fig. 5 shows an example of the effect of the
incident angle on the mean restitution coefficients Rt and Rn predicted
by the stochastic impact model.

The values of the coefficients ai defined in matrix A are derived
from the statistical analyses of a large data set obtained fromnumerical
ersus the incident angle αin using the stochastic impact model.



Fig. 6. Definitions of outgoing (Vt
out, Vn

out, and ωout) and incident (Vt
in, Vn

in, and ωin) velocity components used in the stochastic impact model and of the deviation angle δ
characterising changes in boulder fall direction due to the rebound.

Fig. 7. Plan view (x–y plane) illustrating the principle used for calculating the fall
direction after rebound. The deviation of the boulder from its direction before rebound
is only allowed towards the aspect.
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simulations of impacts (Bourrier et al., 2007, 2008a,b). These
numerical simulations of impacts were previously calibrated from
laboratory experiments of the impact of a 10-cm spherical rock on a
coarse soil composed of gravels ranging from 1 cm to 5 cm (Bourrier et
al., 2008b). The adequate agreement between the laboratory experi-
ments and the numerical simulations of impacts proves that the
impact simulations, and consequently the stochastic impact model,
satisfactorily express the energy transfers occurring during the impact
of a boulder on a coarse soil. Although the calibration of the numerical
model of impacts was satisfactory, one limitation could stem from the
differences in the size of the impacting and soil rocks during calibration
and during application in this study. However, the influence of the
scale change effects was proved to be small by comparing the results
of the numerical simulations of impacts at different scales (Bourrier,
2008).

For this study, the parameters of the stochastic impact model were
determined for five fixed ratios, which have the values 1, 2, 3, 4, and 5,
between the radius of the falling boulder Rb and the mean radius of
the particles constituting the slope surface Rm. For each Rb/Rm ratio, a
fixed set of model parameters was calculated. For larger ratios, the
model has not yet been calibrated, whichmeans that it is currently not
suitable for rebounds of large boulders on fine soils.

3.3. Calculation of the fall direction

The fall direction in the x–y plane is primarily determined by the
slope topography at the rebound position and is calculated by a
probabilistic algorithm. During each subsequent rebound, the model
allows the sphere to deviate from its direction before rebound towards
the direction of the aspect of the raster cell in which the boulder
rebounds (Figs. 6 and 7). The aspect is the downslope direction of the
maximum rate of change in value from each cell in a raster to its
neighbouring ones and represents the steepest slope direction. The
deviation angle δ (Fig. 6) is determined by a random number that
defines whether the boulder is deviated between 0 and 22.5° from its
original direction, or 22.5–45°, or 45–50°. The first case has a 72%
probability of occurrence, the second one has a 24% probability, and
the third one a 4% probability (Fig. 7). These deviation angles and their
related probabilities are based on the experimental results presented
in Dorren et al. (2005). If the sphere moves upslope, a maximum
deviation of 22.5° is allowed for both directions lateral to the direction
before rebound. If the boulder enters a depression in the DEM, the
direction before and after rebound remains unchanged.



Table 2
Results after 10,000 simulation runs for both methods A (“size classes”) and B (“mean
size”).

Velocity (m s−1) Passing height (m) Translational kinetic
energy (kJ)

Mean Std.
dev.

Max. Mean Std.
dev.

Max. Mean Std.
dev.

Max.

EL1a observed 12.5 5.2 28.1 1.4 1.1 5.0 205 169 786
EL1 method A 11.5 4.2 27.7 1.2 0.9 10.4 175 126 1081
EL1 method B 12.7 4.3 30.3 1.4 1.0 11.0 213 152 1332
EL2 observed 13.8 5.5 28.9 1.6 1.4 6.2 245 196 958
EL2 method A 10.9 4.7 29.6 1.2 1.0 15.5 167 139 1174
EL2 method B 12.1 5.1 31.8 1.4 1.1 12.7 207 173 1575

a EL=Evaluation line.
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3.4. Input data

The DEM used for the experimental site covers an area from the
release point to the opposite river bank in the valley bottom. The DEM
was created using inverse distance-weighted interpolation (see for
instance Weber and Englund, 1992) of, on average, three x, y, z points
per DEM cell. These points were collected in the field with a detailed
topographical survey using a laser distance meter and a compass.
The topographical survey was conducted so that a mean density of 1
point/mwas available in all directions. We created this DEM because,
due to the surrounding forest cover, GPS measurements are not
accurate on the study site and a high-resolution, photogrammetric or
LiDAR-derived DEM was not available. Verification with an available
10-m DEM and an orthophoto showed that the accuracy of the created
DEM was about 1 m in the x–y plane and 0.5–1.5 m in the z-direction.

At the release point, boulders were dropped from a height of 5 m.
The simulated boulders were assumed to be spherical, and the
distribution of their volumes was identical to the experimental
distribution (Fig. 2). The errors associated with volume estimation
were therefore the same in the experiments and in the simulations.
Volume estimation errors were reduced as much as possible by
choosing the released boulders in a quarry so that they were as
spherical as possible.

The slope surface characteristics were determined in the field by
identifying homogenous zones that are represented as polygons on a
map (Fig.1). Each polygon defines the size of thematerial covering the
slope. To represent the size of the surface material in this polygon
map, we used two different approaches. The first one, which is called
method A (“size classes”), describes the surface with three size
probability classes according to Dorren et al. (2006). The second one,
calledmethod B (“mean size”), is a more simplified description, which
is based only on themean radius Rm of thematerial covering the slope.
Method A aims at giving a precise description of the size of the surface
material and its variation. The method uses three roughness classes
Rg70, Rg20, and Rg10. These classes represent the diameter of the
obstacle, corresponding to rocks covering the soil surface, encoun-
tered by a falling boulder during 70%, 20%, and 10%, respectively, of the
rebounds in a homogenous zone. For method A, the field survey
therefore consists of estimating the equivalent diameter of the rocks
covering the soil surface corresponding to the three classes Rg70, Rg20,
and Rg10 in each homogenous zone on the study slope. During
each rebound calculation, the mean radius Rm of the material
encountered by the impacting boulder was randomly chosen from
Table 1
For method A, the surface material size is defined using three roughness classes Rg70,
Rg20, Rg10 and, for method B, the surface material size is defined using the parameter
Rm.

Zone Rg70 (m) Rg20 (m) Rg10 (m) Rm (m) Description

1 0.20 0.15 0.07 0.10 Inside the avalanche channel
2 Inf Inf Inf Inf River
3 0.30 0.10 0.45 0.18 Zone covered with talus alongside

the channel
4 0.50 0.30 0.10 0.25 Old road on talus slope, covered with

single blocks
5 0.40 0.20 0.10 0.25 Talus slope downslope of middle

forest road
6 0.50 0.25 0.75 0.25 Rough talus slope downslope of

middle forest road
7 0.50 0.28 0.90 0.25 Roughest part of the talus slope

downslope of middle forest road
8 0.40 0.25 0.50 0.25 Small block accumulation
9 0.20 0.05 0.10 0.10 North-east forested part of talus slope
10 0.50 0.30 0.10 0.10 Irregular forest road on talus slope
11 0.05 0.05 0.05 0.05 Soils in valley bottom
12 0.02 0.05 0.10 0.03 Fine soils in valley bottom
13 0.25 0.15 0.10 0.10 South-west forested part of talus slope
14 0.10 0.20 0.30 0.10 Upper forest road
the three material size values Rg70, Rg20, and Rg10 given their
accompanying probabilities. In method B, only one mean radius Rm
value represented the material size in each homogenous zone.
Rebound was therefore calculated by considering Rm the mean radius
of the rock encountered by the falling boulder in a given zone.

In the rebound model used, the value of the Rb/Rm ratio is rounded
to the nearest integer with a maximum of 5. A set of rebound model
parameters (ai coefficients) was determined depending on the value
of the Rb/Rm ratio. Table 1 reports the values used for all the polygons
defined and shown on the map in Fig. 1.

3.5. Simulation scenarios

Rockfall trajectory simulations were carried out using method A
(“size classes”) and method B (“mean size”). For each method, 100,
1000, 2000, 5000, and 10,000 falling boulders were simulated.
For each set of simulations, the probability distribution functions of
the velocity, translational kinetic energy, and passing height were
compared with the corresponding experimental distributions at two
“evaluation lines” (Fig. 1). Evaluation line 1 (EL1) was located 185 m
from the starting point, measured along the slope, directly in the
centre of the viewing plane of camera 4. Evaluation line 2 (EL2) was
located after 235 m, in the centre of the viewing plane of camera 5.
In addition, the spatial patterns of the trajectories, the passing
frequencies per raster cell, and the stopping locations of the simulated
boulders were analysed. The latter were compared with stopping
locations observed during the field rockfall experiments.

3.6. Rebound analysis

If the agreement between the experimental and simulated results
is satisfactory, the simulations can collect additional information on
the kinematics of the falling boulders, which cannot be measured
during the full-scale field experiments. First, precise values of the
rotational kinetic energy of the falling boulders at EL1 and EL2 can be
obtained from simulations, whereas the rotation of the falling boulder
cannot be precisely measured from the experimental films. In the
simulations, the rotational kinetic energy of the falling boulder Erot
Table 3
Relative errors (RE) compared to observations after 10,000 simulation runs for both
methods A (“size classes”) and B (“mean size”).

RE velocity (%) RE passing height (%) RE translational
kinetic energy (%)

Mean Std.
dev.

Max. Mean Std.
dev.

Max. Mean Std.
dev.

Max.

EL1 method A −8 −19 −1 −14 −18 108 −15 −25 38
EL1 method B 2 −17 8 0 −9 120 4 −10 69
EL2 method A −21 −15 2 −25 −29 150 −32 −29 23
EL2 method B −12 −7 10 −13 −21 105 −16 −12 64



Fig. 8. Distribution of the velocities, passing heights, and translational kinetic energy for observed and simulated trajectories for EL1 scaled to the observed values for bothmethods A
(“size classes”) and B (“mean size”).

Table 4
Kolmogorov–Smirnov tests (KS tests) compared to experimental distributions after
10,000 simulation runs for both methods A (“size classes”) and B (“mean size”).

Velocity Passing height Translational kinetic
energy

KS test
0: not
rejected
1: rejected

p-value KS test
0: not
rejected
1: rejected

p-value KS test
0: not
rejected
1: rejected

p-value

EL1 method A 0 0.2225 1 0.0385 0 0.1772
EL1 method B 0 0.2172 0 0.0570 0 0.1421
EL2 method A 1 0.0033 1 0.0224 1 0.0223
EL2 method B 0 0.1022 1 0.0366 0 0.2911
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can therefore be compared with the translational kinetic energy of the
falling boulder Etrans and with the total kinetic energy of the falling
boulder Etot.

Information regarding the incident kinetic energy for all rebounds
can also be collected, whereas this is not possible from field
experiments. In particular, for each rebound, the simulations provide
information on the distribution of the incident kinetic energy between
the tangential, normal, and rotational incident velocity components.
Starting from Eqs. (1)–(3), the incident kinetic energy Etot

in is divided
into normal incident energy En

in, tangential incident energy Et
in, and

rotational incident energy Erot
in defined as follows:

Eintot = Eint + Einn + Einrot ð8Þ

Eint =
1
2
mb V in

t

� �2 ð9Þ

Einn =
1
2
mb V in

n

� �2 ð10Þ

Einrot =
1
2
Ib ωin
� �2 ð11Þ
Finally, to compare the implemented rebound algorithm to
classical rebound models based on the use of restitution coefficients,
the Rt and Rn values obtained during the simulations were computed
using the classical definition given in Eqs. (6) and (7).

4. Results

1000 rockfall simulations were required to provide stable predic-
tions,meaning that the variation in themeans and standard deviations



Fig. 9. Percentage of passing boulder versus distance from the release point for the
experiments, method A (“size classes”) and method B (“mean size”).
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of the parameters measured on EL1 and EL2 became b5%. However, to
decrease the variation in the results as much as possible, 10,000
simulations were executed for both methods.
4.1. Kinematic results at the evaluation lines

The comparisons between the experimental and simulated results
at EL1 and EL2 show that both the mean values and standard
deviations were predicted accurately for boulder velocity, passing
heights, and translational kinetic energy (Table 2). However, in
most cases, the simulated mean values and standard deviations were
slightly smaller than the experimental values. In addition, the
predictions obtained using method B (“mean size”) were system-
atically closer to the experimental results than those obtained using
method A (“size classes”). All relative errors (RE) (Table 3) are b21%
for method B, whereas they reach up to 32% for method A.

The shapes of the distributions of the simulated quantities were
very similar for methods A and B (Fig. 8). These distributionswere also
similar to those obtained from the experimental results. On the
contrary, the maximum values were overestimated by the simula-
tions, irrespective of the method used (Table 3).
Fig. 10. Map of the simulated pass frequencies for methods A (“size classes
The statistical Kolmogorov–Smirnov test was performed to
compare all the simulated distributions with the corresponding
experimental distributions. If the result of the test is 0, it can be
assumed that the simulated and experimental results are similar. If the
result is 1, this is not the case. The similarity hypothesis is rejected if
the p-value associated with the test is less than 0.05. The larger the p-
value is, the more plausible the hypothesis that the two samples
belong to the same distribution. The results of the Kolmogorov–
Smirnov tests showed that method B (“mean size”) provided a better
prediction of the experimental distributions because the similarity
hypothesis was only rejected once out of 6 comparisons. Formethod A
(“size classes”), it was rejected 4 times out of 6 comparisons. In
addition, the p-value obtained when comparing the simulated
distributions to the measured distributions were all between 0.01
and 0.3 whatever method was used, which means that the simulated
distributions were not significantly different from the experimental
distributions (Table 4). Both methods A and B can therefore be
considered suitable to simulate the experimental results.
4.2. Rockfall trajectories

The numbers of boulders deposited with decreasing altitude are
presented in Fig. 9, for both the experimental and simulated results.
The simulations, usingmethods A and B, provided values similar to the
experimental values for the distribution of stopping points, especially
for boulders reaching low altitudes. Interestingly, predictions using
method A (“size classes”) resulted in a slight underestimation of the
percentage of passing boulders with decreasing altitude. On the
contrary, the simulations using method B (“mean size”) provided a
slight overestimation. For boulders stopping just after the release
point and for boulders reaching long distances from the release point
(N350 m), both methods predicted larger percentages of passing
boulders than the experimental results.

The comparison between simulated run-out zones and experi-
mental stopping points (Fig. 10) showed that, first, the simulated run-
out zone was larger than the one observed during the experiments.
Second, discrepancies were observed for stopping points located
below the forest road. In the experiments, two distinct deposit
areas were observed, whereas the simulated passing frequencies only
highlighted one of them located on the bottom left of the maps in
Fig. 10.
”) and B (“mean size”) and the observed stopping points (white dots).



Fig. 11. Distribution of the simulated rotational kinetic energy compared with the total kinetic energy for EL1 and EL2 using method B (“mean size”).
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4.3. Information gathered from simulations

Since we consider that the agreement between the experimental
and simulated results is highly acceptable, we used the simulations to
study kinematical parameters that could not be measured in the field,
in particular the distribution of the rotational velocity of the falling
boulder (Fig. 11). The mean value of the Erot/Etot ratio was 6% for EL1
and 8% for EL2. In addition, the associated standard deviation was 7%
for EL1 and 8% for EL2.

Further, the simulated Et
in/Etotin ratios (Fig. 12) showed that most of

the incident energy was associated with the tangent-to-soil-surface
component of the incident velocity. This result was confirmed by the
distribution of the incidence angle (Fig. 13), which highlights the
small values of this angle. Finally, the simulation results provided
information on the distribution of Rt and Rn restitution coefficients for
all rebounds, as shown in Fig. 14.

5. Discussion

5.1. Comparison of the experimental and simulation results

The comparisons of the experimental and simulated results, using
methods A and B, showed that the 3D trajectory simulation could
predict rockfall trajectories and kinematics. Reproducible simulation
Fig. 12. Distribution of the simulated tangential incident energy Et
in compared with the

total incident energy Etot
in for all the simulated rebounds using method B (“mean size”).
results were obtained from 1000 simulations onwards, which make
3D trajectory simulation feasible. However, in this study, there were
fewer sources of variability than in the daily practice of rockfall hazard
assessment. In particular, the rockfall starting position and the boulder
volumes were exactly known. In practice, the latter are not always
easy to predict.

The differences between the observed and simulated distributions,
the maximum values in particular, could stem from the fact that, in
the experiments, the distributions were based on only 100 rockfall
experiments. They therefore do not represent the full asymptotic
distribution that would have been obtained from a very large number
of experiments. However, the global shape of the distribution, such
as the most probable value and the global distribution of the values,
was satisfactorily represented. Thus, if only the global characteristics
of the distributions are compared, the simulated distributions can
be considered good predictions, which was confirmed by the results
of the Kolmogorov–Smirnov test, in particular for method B (“mean
size”).

The comparisons between the simulated and the experimental
stopping points showed the capability of the rockfall model to predict
run-out distances (Fig. 9). However, Fig. 9 shows that method B
(“mean size”) approached the experimentally observed deposit
pattern best. Neither method A nor B reproduced the number of
boulders stopping in the upslope section of the test site. These blocks
Fig. 13. Distributions of the incidence angle αin over all the simulations using method B
(“mean size”).



Fig. 14. Distribution of the tangential and normal restitution coefficients Rt and Rn over all simulations using method B (“mean size”).

77F. Bourrier et al. / Geomorphology 110 (2009) 68–79
stopped within the first 20–40 m from the release point due to sliding
on the side with the largest surface after the first rebound. Fig. 9
shows that this accounted for ∼5% of the released boulders. For
large distances from the release point (350 m and farther), the
differences between the simulated and the experimental maximum
run-out distances (Fig. 9) resulted from the rebound algorithm not
being adapted to the surface material consisting of soils composed of
fine particles, which was found in the valley bottom (Fig. 10). The
algorithm was specifically developed for rocky surfaces and therefore
will not produce realistic results for other soil types.

Although the simulated run-out zones were larger than the
experimental run-out zones (Fig. 10), the 1% pass frequency limit,
i.e., the limit passed by 1% of the boulders, correspond quitewell to the
Fig. 15. Hillshade of the DEM showing the study site downslope from camera 5. The
white dotted circle outlines the imperfect digital representation of the terrain. Black
arrow 1 shows the main simulated trajectory. Black arrow 2 indicates the second main
trajectory and its deviation due the artefact in the DEM. The small grey circles represent
the stopping positions of the experimental boulders.
experimentally observed stopping points only (Fig. 10), especially for
method B.

The existence of two deposit areas was not reproduced by the
simulations. The simulated passing frequency maps show two main
trajectory paths upslope of the forest road, which converge into a
single path in the downslope section. The experimental trajectories,
however, also show two distinct paths in the downslope section.
The difference between these experimental and simulated patterns
resulted from an imperfect digital representation of the terrain in
the DEM south-west of the middle forest road (Fig. 15). This local
discrepancy induced slight changes in the pattern of the trajectory
path and in the shape of the run-out zone associated with the 1/100
pass frequency (Fig. 10).

Finally, the comparison of the results obtained by method A and
method B raises questions on how precise the parameter values
estimated in the field must be. For methods A and B, the simulated
distributions of velocities, rebound heights, and energies (Fig. 8) as
well as the run-out zones (Fig. 9) were very similar. The detail of the
description of the slope surface characteristics therefore only slightly
influences the simulation results. Our experience shows, however,
that in the field it is easier to estimate three size classes than a single
one, as shown in Fig. 16. For example, on a slope covered with rather
fine scree (b5 cm), quite some rocks measured 10 cm in diameter, and
10% of the surface covered with 20-cm rocks, it is quite difficult to
estimate a single, valid, mean particle size. The “size classes” method
Fig. 16. A typical field situation in Zone 3, where the surface material should be
characterised by size classes method.
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describes themean size of the particles that cover 70%, 20%, and 10% of
the surface, with 70%=5 cm, 20%=10 cm, and 10%=20 cm. Since
method B (“mean size”) provided more accurate results, this implies
that method A (“size classes”) could be used in the field for a better
estimate of the single mean particle size, so that method B (“mean
size”) could be used in the simulation.

5.2. Advantages and limitations of the approach

An advantage of the approach presented here is that simulation
can be used to gather information that cannot be obtained in the field
(see Section 3.6). First, the simulated distributions of the rotational
kinetic energies compared to the total kinetic energy at EL1 and EL2
show that the translational velocity of the boulder mainly determines
the total boulder kinetic energy (Fig. 11). One could note a slight trend
toward a downhill increase in the Erot/Etot ratio, which may be due to
the specific topography of the study site. Although the rotational
energy was smaller than the translational energy, the knowledge of
the distribution between these two energies is essential for designing
effective protective structures. The translational kinetic energymainly
determines the design of the structure (structural strength perfor-
mance), whereas the rotational kinetic energy determines the
capability of the structure to prevent boulders from rolling over the
structure (structure shape efficiency).

Another advantage of the approach presented is the insight
obtained in the commonly used coefficients Rt and Rn. The values of
the Rt calculated from the simulated rebounds (Fig. 14) are in
accordance with common values for talus slopes, but they show that
the variability of Rt is even greater than assumed in the literature. In
contrast, the values of the Rn coefficients (Fig. 14) are extremely high
compared to the common values, which generally range from 0.25 to
0.65. The dependence of Rt and Rn recalculated from the stochastic
impact model on the incidence angle explains this phenomenon
(Fig. 5). For small incidence angles, which correspond to most of the
rockfall impacts in the simulations (Fig. 13), the values of Rt depend
only slightly on the incidence angle; they correspond to common
values (Rt≈0.7; Fig. 14). On the contrary, the values of Rn are very
high (RnN1) compared to common values (Fig. 14). However, in the
case of a vertical impact, the Rn values predicted by the stochastic
impact model (Fig. 5) are in accordance with common experimental
results (Rn≈0.4). The main reason for these differences is that the
common values of Rn are generally obtained from experimental
campaigns conducted for boulders falling vertically on a slope surface.
This does not correspond to the simulated impact cases because
simulation incidence angles were, for the most part, b50°, as shown in
Fig. 13. The high values of Rn in the simulations explain that, although
the incident normal velocity Vn

in was small for impacts that were
parallel to the slope's surface, the normal velocity of the boulder after
a rebound can be very high because of the energy transfer from the
rotational to the translational kinetic energy. This phenomenon is not
accounted for in classical rebound algorithms, whereas it is included
in the stochastic impact model.

The values of Rn should therefore be chosen with caution when
performing a rockfall trajectory analysis using classical rebound
algorithms. However, the importance of Rn is generally subordinate
to Rt. Indeed, properly modelling the transfer of the tangential
incident energy between the falling boulder and the soil during a
rebound is essential because Fig. 12 shows that the tangential incident
energy is, in most cases, determinant for the total incident energy
(93% of the calculated Et

in/Etotin ratios are N0.75).
The two main points of interest in the rebound calculation

procedure developed herein are, first, precisely modelling the
mechanisms governing the rebound as well as their associated
variability and, second, the more objective field data collection
procedure. Both points are of great interest for rockfall hazard
mapping, which demand a satisfactory prediction of the variability of
both the stopping points and the kinematics of the falling boulders.
Following the proposed approach, hazard mapping can be greatly
improved because it allows the reliable spatial characterisation of the
passing frequencies as well as of the mean and standard deviation
values of the rockfall energies (intensity). Rockfall hazard mapping
approaches based on combinations of intensity andprobability, such as
those developed in Switzerland (Raetzo et al., 2002; Jaboyedoff et al.,
2005), can therefore be used with increased confidence.

However, this work is limited by the partial character of the
validation. From a theoretical point of view, the amount of experi-
mental data is not (and almost never is) sufficient to validate simulated
rare events. Since the performance and analysis of 1000 full-scale
rockfall experiments would take roughly 10 years, one must rely on
simulations to predict extreme events, even though they are not fully
validated.

Another limitation of this study is that the stochastic impact model
developed can only be used on rocky slopes. However, similar
approaches could be developed to characterise the rebound of a
boulder on all types of soil provided that large data sets composed of
reproducible and precisely defined impact tests are available for
statistical analysis. To create these data sets, the direct use of laboratory
or field experiments is not suitable. However, they can be generated
fromnumerical simulations that have previously been calibrated using
these experiments. That is exactly were the challenge lies.

6. Conclusions

This paper has investigated a newly developed stochastic impact
model, which was implemented in an existing 3D rockfall trajectory
model to calculate velocities of simulated boulders after a rebound on
the slope. The first objective of this study was to assess the adequacy
of the approach proposed. For this purpose, a full-scale experimental
program made it possible to assess the predictive capacity of this tool.
Comparisons between experimental and simulated results show very
acceptable agreements. The second objective of the study was to
evaluate theminimumamount offield data required to obtain accurate
simulation results. Themain advantages of the developed approach are
the small number of parameters to be assessed in thefield and the clear
physical meaning of these parameters. Basically, only the mean size of
the rocks covering the surface of the slope is required. This can be
measured objectively in the field. The method developed does not
work for boulders impacting fine soils. We believe, however, that a
similar objective stochastic rebound model could be developed, based
on a similar combination of numerical and laboratory experiments.

The stochastic feature of this new approach is an excellent basis for
continuing integrating probabilistic information in rockfall hazard
management. As reliable spatially distributed probabilistic informa-
tion on rockfall trajectories is provided, such as the passing heights
and kinetic energy distributions as well as the passing frequencies for
each position on a slope, the proposed approach offers a complete
data set for positioning and designing rockfall protective structures as
well as for hazard zoning.
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