
Improved Landsat-based forest mapping in steep mountainous
terrain using object-based classification

Luuk K.A. Dorrena,*, Bernhard Maierb, Arie C. Seijmonsbergena

aInstitute for Biodiversity and Ecosystem Dynamics—Physical Geography, Universiteit van Amsterdam,

Nieuwe Achtergracht 166, NL-1018WV Amsterdam, The Netherlands
bStand Montafon—Forstfonds, Montafonerstr. 21, A-6780 Schruns, Austria

Received 17 December 2001; received in revised form 26 November 2002; accepted 3 February 2003

Abstract

The accuracy of forest stand type maps derived from a Landsat Thematic Mapper (Landsat TM) image of a heterogeneous

forest covering rugged terrain is generally low. Therefore, the first objective of this study was to assess whether topographic

correction of TM bands and adding the digital elevation model (DEM) as additional band improves the accuracy of Landsat TM-

based forest stand type mapping in steep mountainous terrain. The second objective of this study was to compare object-based

classification with per-pixel classification on the basis of the accuracy and the applicability of the derived forest stand type maps.

To fulfil these objectives different classification schemes were applied to both topographically corrected and uncorrected

Landsat TM images, both with and without the DEM as additional band. All the classification results were compared on the basis

of confusion matrices and kappa statistics. It is found that both topographic correction and classification with the DEM as

additional band increase the accuracy of Landsat TM-based forest stand type maps in steep mountainous terrain. Further it was

found that the accuracies of per-pixel classifications were slightly higher, but object-based classification seemed to provide

better overall results according to local foresters. It is concluded that Landsat TM images could provide basic information at

regional scale for compiling forest stand type maps especially if they are classified with an object-based technique.

# 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Intensification of land use in mountainous terrain

demands integrated watershed planning, of which

forest management is an important part. Forest map-

ping and forest ecological research form an important

contribution to management strategies and plans.

Since the 1970s, many authors have been investigating

how remote sensing could contribute to forest map-

ping (Peterson et al., 1987; Ardö, 1992; Congalton

et al., 1993; Gemmell, 1995; Martin et al., 1998;

Kilpeläinen and Tokola, 1999; Pax-Lenney et al.,

2001; Tokola et al., 2001) and to forest ecological

research (Ekstrand, 1994; He et al., 1998; Lucas and

Curran, 1999; Coops and Culvenor, 2000). The use-

fulness of Landsat TM imagery as an aid in forest

management is generally agreed if TM imagery is

combined with field data and high-resolution imagery

(Gemmell, 1995; Trotter et al., 1997; Salvador and

Pons, 1998; Kilpeläinen and Tokola, 1999; Hyyppä
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et al., 2000; Bebi et al., 2001). However, the resolution

of Landsat TM imagery is in many cases too low to

derive forest parameters required by foresters such as

timber volume, basal area and tree height. Conse-

quently, TM imagery is generally used in forestry

to provide contemporary and historic forest stand type

maps (Anderson level II; see Anderson et al., 1976)

and forest cover maps for larger regions. These maps

could be used for assessing large-area regeneration,

(re-)growth and causes of distinct changes in forests

(Fiorella and Ripple, 1993).

The problem with Landsat TM-based forest stand

type maps of mountainous terrain, derived with tradi-

tional per-pixel classification methods, is that the

accuracy is fairly low, even if a digital elevation model

(DEM) is added as extra band (Frank, 1988; Itten and

Meyer, 1993). Accuracies of forest stand type maps of

less-rugged or flat terrain are generally higher (see

Mickelson et al., 1998). One of the reasons for this is

that both land cover and topography determine the

spectral values in remote sensing imagery, especially

in case of steep or high relief energy areas. Strong

variability in the reflectance from canopies of similar

forests and direct shadows as well as cast shadows are

indissoluble results of the topography in such areas,

which complicate the classification. Topographic cor-

rection solves this problem according to many authors

(Leprieur et al., 1988; Civco, 1989; Ekstrand, 1996;

Tokola et al., 2001), although others do not agree on

this (Carpenter et al., 1999). Despite topographic

correction, traditional per-pixel methods still encoun-

ter problems with deriving forest stand type maps

from Landsat TM images of mountainous terrain,

because of the large variability in reflectance within

forest stands and spectral confusion of species (Meyer

et al., 1993).

Several authors have already referred to classifying

segmented or merged pixels of Landsat TM images as

an alternative to per-pixel methods (Ton et al., 1991;

Woodcock and Harward, 1992; Stuckens et al., 2000).

Image segmentation has the potential to merge

pixels into objects that correspond to forest stands

(Woodcock and Harward, 1992). Accordingly, this

method is called object-based classification. This

method could improve Landsat TM-based forest map-

ping in steep mountainous terrain. Therefore, the first

objective of this study was to assess whether topo-

graphic correction of Landsat TM bands and adding a

DEM as additional band results in improved forest

stand type mapping in steep mountainous terrain. The

second objective was to evaluate which classification

method performed best: traditional per-pixel classifi-

cation or object-based classification. These objectives

raise the following research questions:

1. What is the effect of topographic correction on the

accuracy of Landsat TM-based forest stand type

maps?

2. Does the classification of a Landsat TM image

improve when a DEM is used as additional band

during the analysis?

3. Does object-based classification improve the

accuracy and the applicability of Landsat TM-

based forest stand type maps compared to per-

pixel classification?

To answer these questions, we firstly prepared the

used data, which also included the extraction of a

forest mask. This mask was used for both classifica-

tion methods. Subsequently, we performed the per-

pixel classification and interpreted the results. After

that we carried out the object-based classification and

compared those results with the per-pixel classifica-

tion. The set-up of this paper is identical to our

research procedure, which is shown in the flow dia-

gram in Fig. 1.

2. Materials

2.1. Study area

The Montafon region, which covers approximately

530 km2, served as a test site for this study. It is located

in the southern part of Vorarlberg, the westernmost

province of Austria (between 478800and 468500 lati-

tude and 98410and 108900 longitude, see Fig. 2). As an

alpine region its altitude ranges from 600 m above sea

level (a.s.l.) at the valley bottom up to over 3000 m

a.s.l. The average relief energy is approximately

250 m/km2. The geology is determined by sedimen-

tary rocks in the northern part and by metamorphic and

crystalline rocks in the southern part (GBA, 1998).

The Montafon valleys are open to the northern wind-

ward side of the Alps and therefore under strong

oceanic influence (mean annual temperature approxi-

mately 8 8C, mean annual precipitation at the bottom
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of the main valley approximately 1300 mm). The

forests reach up to about 1800 m a.s.l. and cover a

total area of approximately 12,500 ha. Thirty-three

percent of the forested area is steeper than 458. The

forests provide essential protection for villages and

infrastructures against snow avalanches and rockfall.

In addition, these forests are important for, amongst

others, timber production and recreation. Therefore,

the forests are managed in a multifunctional sustain-

able way. A local forest organisation is responsible for

forests management in this region. For this they need

information on the spatial coverage of the three main

forest types: broadleaved forest, mixed forest and

deciduous forest. The broadleaved (Fagus silvatica,

Acer pseudoplatanus, Tilia cordata, Fraxinus excel-

sior) and mixed forests (Picea abies, F. silvatica,

Abies alba) are mainly found in the valleys and up

to 1000 m a.s.l. Spruce (P. abies) forests predominate

above 1000 m a.s.l., though the mixed forests reach up

to 1500 m a.s.l. Larix decidua and Pinus cembra are

only found in fragmental stands close to the timberline

(Maier, 1993). The distribution of forest stand types at

regional scale is mainly determined by altitude, but at

slope scale other factors such as parent material, relief,

microclimate, humus forms, light and disturbances

caused by natural hazards also become important

(van Noord, 1996). Generally, the canopy density

decreases with increasing altitude due to the changing

climatic conditions, e.g. heavier snow loads. Because

uneven-aged forests predominate, tree distribution,

stem density, tree height and basal area vary strongly

between forest stands. As typical for mountain forests,

these varied forest stands are distributed in a patchy

mosaic-like structure (Maier, 1993).

2.2. Satellite imagery and digital elevation data

A summer and a winter Landsat TM5 scene (respec-

tively, recorded 9 September 1998 and 28 January

1998, both at 9:40 CMT) and an IRS-1C (Indian

Fig. 1. Flow diagram of the research procedure (the dotted arrows refer to accuracy assessment).
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Remote Sensing Satellite) panchromatic scene

(recorded at 25 September 1997, 10:35 CMT) were

used in this study. The resolution of a Landsat TM

scene is 30 m � 30 m; the resolution of a panchro-

matic IRS-1C scene is 6 m � 6 m. A DEM produced

by the National Austrian Mapping Agency was avail-

able for this study. This DEM is arranged as a regular

grid of surface height points at 25 m spacing. Accord-

ing to the product information (BEV, 2001), this DEM

was created by interpolation of photogrammetric

height measurements at a ground distance of 50 m,

enhanced and supplemented with prominent terrain

structures. The modelled elevation accuracy is given

as �1 to �3 m in open and flat land and �5 to �20 m

in forests and high-alpine terrain.

2.3. Validation and training data

Local foresters digitised ground truth polygons on

the basis of digital colour-infrared (CIR) orthophotos,

which covered different areas with: open coniferous

forest, dense coniferous forest, broadleaved forest and

mixed forest. Mixed forests are stands where neither

broadleaved nor coniferous trees account for more

than 75% of the tree crown area, in accordance with

the definition of UN-ECE/FAO (2000). The CIR

orthophotos were taken in the period July–September

1996 and have a resolution of 0:25 m � 0:25 m.

Ground truth polygons were created in areas where

tree species, tree distribution and stem density were

comparable in 1996 and 1998. The ground truth poly-

gons were converted into a raster map with a cell size of

25 m � 25 m. Then, this map was randomly divided in

training areas and validation areas. The validation areas

were used for the accuracy assessment. The accuracies

of all the classifications were assessed on the basis of

confusion or error matrices (Congalton, 1991; Richards

and Jia, 1999) and kappa statistics (KHAT) (Cohen,

1960; Hudson and Ramm, 1987; Congalton, 1991;

Congalton and Plourde, 2000).

Fig. 2. Study area: the Montafon region (near-IR band of the September 1998 Landsat TM image).
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3. Data preparation methods

3.1. Radiometric and geometric pre-processing

Radiometric correction was applied to all the bands

of the two Landsat TM scenes by multiplying by the

gain and by adding the offset, which are both provided

in the image header files. The images used for this study

were extracted from the corrected scenes and covered

approximately 35 km � 35 km. Fortunately, no detec-

tor errors or clouds were present in the used images.

The topography of mountainous terrain is respon-

sible for geometric distortions (Itten and Meyer, 1993;

Richter, 1997; Sandmeier and Itten, 1997), but in the

case of steep mountainous terrain these distortions

increase, therefore approximately 50 ground control

points were used for orthorectifying both Landsat TM

images and the IRS image. The RMS error of the

rectification was 0.57 pixels (17.1 m) for the January

1998 image and 0.43 pixels (12.9 m) for the September

1998 image. Both images were resampled to 25 m�
25 m resolution using a nearest neighbour algorithm.

The IRS-1C Panchromatic image was orthorectified

with an RMS error of 0.26 pixels (1.56 m) and

resampled to 5 m � 5 m resolution using a cubic con-

volution algorithm, since this image has only been used

for visual interpretation and not for classification.

3.2. Extracting a forest mask

Forest masks were derived using maximum like-

lihood and Parallelepiped classification of the bands

1–5 of the January 1998 Landsat TM image and the

bands 2, 4 and 5 of the September Landsat TM 1998

image. The January image was tested because firstly

shadows are not a problem in this image, since scatter

light enlightens shadowed forested areas due to the

snow cover, even on steep north facing slopes, which

show limited reflection in summer images. Secondly,

there is no confusion between shrubs and broadleaved

forests, because small shrubs are covered under a thick

snow pack. For each of the classification results,

confusion matrices and KHAT values were calculated

on the basis of forest/non-forest polygons. These

polygons were digitised on screen on the basis of a

merged IRS-TM image, which was created with an

Intensity-Hue-Saturation transformation (Carper et al.,

1990) using the September 1998 Landsat TM image

and the IRS-1C Panchromatic image. maximum like-

lihood classification of the bands 1–5 of the January

1998 Landsat TM image provided the most accurate

forest mask (overall accuracy: 0.94, KHAT value:

0.73).

3.3. Topographic correction

To account for large variations in surface illumina-

tion that existed between areas that receive direct

sunlight and areas in complete shade, the September

1998 image was corrected for topographic effects.

Currently, a wide range of algorithms for topographic

correction exists (Smith et al., 1980; Teillet et al.,

1982; Colby, 1991; Conese et al., 1993; Meyer et al.,

1993; Franklin and Giles, 1995; Sandmeier and Itten,

1997; Degui et al., 1999). The most applied algorithms

are the Cosine Correction, the C-correction and the

(extended) Minnaert Correction, which is based on

the Minnaert constant (Minnaert, 1941) to account

for non-Lambertian behaviour of vegetated surfaces

(Jansa, 1998). Gu and Gillespie (1998) developed the

Sun-Canopy-Sensor-correction (SCS-correction) spe-

cifically for removing topographic effects in Landsat

TM images of forested areas. The SCS-correction, the

Cosine Correction, the C-correction and the Minnaert

Correctionwereevaluatedbyplotting reflectancevalues

of the masked (using the forest mask) topographically

corrected September 1998 TM band 4 versus the

incidence angles (Meyer et al., 1993; Richter, 1998).

These scatterplots indicated that the SCS-correction

performed best in reducing the correlation between

incidence angle and reflectance value. Therefore the

SCS-correction was used in this study, of which a

subset of the resulting image is shown in Fig. 3. The

SCS-correction is based on the following algorithm:

DNcorr ¼ DNin
cosðbÞ cosðszÞ

cosðiÞ (1)

where DNcorr is the corrected DN value, DNin the

uncorrected DN value, b the slope angle (8), sz the

solar zenith angle (8), i the incident angle (8), which is

the angle between the direction normal to the surface

and the solar beam and could be calculated following

(Holben and Justice, 1980):

cosðiÞ ¼ cosðszÞ cosðbÞ
þ sinðszÞ sinðbÞ cosðaz-aspectÞ (2)

L.K.A. Dorren et al. / Forest Ecology and Management 183 (2003) 31–46 35



where az is the solar azimuth angle (8), aspect the

aspect of the slope (8).

4. Per-pixel classification methodology

After pre-processing, extracting the forest mask and

applying topographic correction to the September 1998

Landsat TM image, per-pixel classifications were

carried out with different datasets. All the datasets

consisted of TM band 5, TM band 4 and a synthetic

band (TM band 4 � TM band 2). The synthetic band

was used for separating broadleaved and mixed forest

(Itten et al., 1992). Spectral histograms and bi-spectral

plot analyses of the signatures for the training areas

indicated that the use of this combination of bands

would optimise the classification since the separability

of the classes was optimal within these bands.

Either topographically corrected or uncorrected TM

bands were classified during each classification test.

Additionally, each set of bands was classified with and

without the DEM as additional band, to evaluate its

effect on the classification result. This technique has

been called the ‘logical channel approach’ (Strahler

et al., 1978; Hutchinson, 1982). Here, the DEM was

stretched to obtain values ranging from 0 to 255.

All the different datasets were masked during classi-

fication by using the forest mask. Each classification

produced four forest classes (open coniferous forest,

dense coniferous forest, broadleaved forest and mixed

forest) as well as a set of unclassified pixels.

It was decided to use maximum likelihood for the

per-pixel classifications. The justification for this

decision was based on KHAT values of preliminary

results of classification tests with various unsupervised

and supervised classification techniques (Richards and

Jia, 1999) and additional tests with classifying princi-

pal components.

5. Per-pixel classifications: results and discussion

5.1. The effect of topographic correction

Table 1 presents the overall accuracy and the KHAT

values of the different per-pixel classifications. These

were calculated from the error matrices in which the

classification results were compared with the valida-

tion data. This table shows that the accuracies of per-

pixel classifications using topographic corrected

bands are higher than those during which uncorrected

bands were used. In the first case, the overall accuracy

increased with 0.10 and the KHAT value increased

with 0.11 when comparing classification numbers 1

and 2 (Table 1). In case of classification numbers 3 and

4, the overall accuracy increased with 0.19 and the

KHAT value increased with 0.22 (Table 1). Another

distinct effect of topographic correction is shown by

the distribution of errors over the incidence angles

(Fig. 4). This figure shows that the classification

errors in the case topographic corrected images were

used are more or less regularly distributed over all

Fig. 3. Left image: subset of the raw September 1998 TM band 4; right image: subset of the topographic corrected September 1998 TM band

4 using the SCS-correction (black pixels are slopes with incidence angles larger than 908).

36 L.K.A. Dorren et al. / Forest Ecology and Management 183 (2003) 31–46



incidence angles. In contrast, the classification errors

in the case uncorrected images were used are more

concentrated in faint illuminated pixels. These results

show that topographic correction improves the accu-

racy of Landsat TM-based forest stand type maps in

steep mountainous terrain. These findings agree with

Meyer et al. (1993), Richter (1998) and Tokola et al.

(2001).

5.2. Optimal dataset for per-pixel classification

As shown in Table 1, per-pixel classification of the

topographic corrected TM bands 4, 5 and the synthetic

band in combination with the DEM produced the

highest overall accuracy (0.73) and KHAT value

(0.63). Per-pixel classifications of the other datasets

produced lower accuracies. The importance of the

DEM for forest mapping in steep mountainous terrain

could be explained by the fact that the distribution of

forest stand types on regional scale is mainly deter-

mined by altitude. Visual evaluations of the classifica-

tion results showed that classifications of TM bands

without the DEM as additional band resulted in

unrealistic distributions of forest stand types, such

as broadleaved forests near the tree line (1800 m

a.s.l.). These results show that it is necessary to use

Table 1

Summary of the per-pixel classification results

Classification number Used dataset Overall accuracy (n ¼ 7411) KHAT (n ¼ 7411)

1 DEM, TM4, TM5, TM4 � TM2 0.73 0.63

2 DEM, TM4a, TM5a, TM4 � TM2a 0.63 0.52

3 TM4, TM5, TM4 � TM2 0.64 0.51

4 TM4a, TM5a, TM4 � TM2a 0.45 0.29

a Bands not corrected for topography.

Fig. 4. The effect of topographic correction (SCS-correction) on the distribution of classification errors over different incidence angles.

Percentages are normalised for the total number of pixels within each incidence angle class.
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a DEM as additional band when classifying a Landsat

TM image into forest stand types in steep mountainous

terrain. For per-pixel classification of forest stand

types in the study area, the combination of topographic

corrected bands and the DEM provided the most

optimal dataset tested. This dataset was also used

for the object-based classification tests.

6. Object-based classification methodology

During the first step of the object-based classifica-

tion method, image objects are created by means of

segmentation. The segmentation process in the used

software eCognition (Definiens-Imaging, 2001) is a

bottom up region merging technique starting with

randomly selected one-pixel objects, where a binary

counter guarantees a regular spatial distribution and

simultaneous growth of treated objects (Baatz and

Schäpe, 2000). Throughout the segmentation process,

an underlying optimisation procedure minimises the

weighted heterogeneity (n � h) of the created image

objects, where n is the size of the object, defined by a

scale parameter and h is a homogeneity criterion,

defined by three sub-criteria: spectral heterogeneity,

compactness and smoothness, which could be

weighted as shown in Fig. 5. The algorithms of the

segmentation process have been described in detail by

Baatz and Schäpe (2000). Firstly, the forest mask,

which was obtained with a supervised classification as

described in Section 3.2, was segmented into forest

and non-forest objects. These objects had an average

size of 270 pixels. These objects were embedded in a

data layer referred to as level 2. Level 2 ensured that

during the eventual classification the same forest

pixels according to the forest mask were classified

as during the per-pixel classification. Subsequently,

the large forest and non-forest objects were divided

into smaller segments. The basis for this segmentation

was the topographic corrected September 1998

TM band 4 and TM band 5. These smaller objects

were embedded in a second data layer, hereafter

referred to as level 1 (Fig. 6). Finally, all the objects

in level 1 were classified using the same dataset that

Fig. 5. Overview of the weighted sub-criteria of the homogeneity criterion, on the basis of which pixels are merged into objects.

Fig. 6. Three hierarchical levels. Left image: pixel level (unsegmented TM band 4); centre image: segmented level 1 (small segmented

objects, e.g. individual forest stands); right image: segmented level 2 (large forest/non-forest objects).
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provided the best per-pixel classification result. This

included TM band 4, TM band 5, the synthetic band

TM4 � TM2, all corrected for topography and the

DEM. The classification was based on a decision tree,

which is presented in Fig. 7. This tree was built up

from different membership functions for the four

forest classes: mixed forest, dense coniferous forest,

open coniferous forest and broadleaved forest. The

membership functions for these forest classes were

defined on the basis of the ground truth areas as

depicted on the train map. This has effect on the

portability of the developed method to other regions,

since specific ground truth is needed to define the

membership functions.

We tested 30 object-based classifications. For each

of those different sizes of the objects in level 1 were

used. The size of the objects ranged from an average

object size of 2.0 pixels to 78.2 pixels. Eventually

were applied. An overview of the object-based clas-

sification methodology is presented in Table 2.

Fig. 7. Membership functions for all the classes. BR	 denotes brightness ¼ ðmean TM5 þ mean TM4 þ mean ðTM4 � TM2ÞÞ/3. Objects that

do not fall into any of the classes remain unclassified.

Table 2

Outline of the object-based classification methodology

Step Method Average object size (pixels) Used dataset Segmentation weights

1 Segmentation of the forest

mask—creation of level 2

270 Forest mask Spectral heterogeneity: 0.6, shape: 0.4,

compactness: 0.5, smoothness: 0.5

2 Creation of smaller

segments—result is level 1

2.0 for the first classification to

78.2 for the last classification

TM5 and TM4 Spectral heterogeneity: 0.6, shape: 0.4,

compactness: 0.5, smoothness: 0.5

3 Classification of level 1 2.0 for the first classification to

78.2 for the last classification

DEM, TM4, TM5

and TM4 � TM2

n.a.

L.K.A. Dorren et al. / Forest Ecology and Management 183 (2003) 31–46 39



7. Final results: object-based versus
per-pixel classification

7.1. Object size and object-based classification

accuracy

Fig. 8 shows the average object size versus the

KHAT values and the overall accuracy of the

object-based classifications. The overall accuracies

and the KHAT values of the object-based classifica-

tions are dependent of the average object size. The

best object-based was based on segmented objects

with an average size of 21.6 pixels. The overall

accuracy and the KHAT value of this classification

were, respectively, 0.70 and 0.58 (Table 3). Smaller

and larger objects produced lower classification

accuracies. The overall accuracy and KHAT value

when using smaller objects decreased to, respectively,

0.63 and 0.49 (average object size: 2.0 pixels). When

using larger objects, the overall accuracy and KHAT

value decreased to, respectively, 0.59 and 0.46 (aver-

age object size: 78.2 pixels).

7.2. Object-based versus per-pixel classification

accuracy

Table 3 summarises the classification results of

the best object-based and per-pixel classification.

Fig. 8. Average object size versus the overall accuracy and the KHAT values of the object-based classifications.

Table 3

Summary of the best per-pixel and object-based classification results

Classification

method

Average object

size (pixels)

Used dataset Overall accuracy

(n ¼ 7411)

KHAT

(n ¼ 7411)

Per-pixel – DEM, TM4 � TM2, TM5, TM4 0.73 0.63

Object-based 21.6 DEM, TM4 � TM2, TM5, TM4 0.70 0.58
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This table shows that the overall accuracy and the

KHAT value of the per-pixel classification are, respec-

tively, 0.03 and 0.05 higher than the object-based

classification. The difference in accuracy between the

two methods is shown in more detail by the confusion

matrices of the best per-pixel and object-based classi-

fication (Table 4). These confusion matrices tabulate the

proportion of pixels matching ground truth pixels,

normalised for the amount of pixels within a ground

truth class. A binomial test on the class accuracies

(applying normal approximation with test statistic Z)

showed that no significant (a ¼ 0:01) differences exist

between the two classification methods for the classes

‘dense coniferous forest’ and ‘mixed forest’. The

classes ‘broadleaved’ and ‘open coniferous’ were sig-

nificantly better classified by the per-pixel method.

Both methods are able to classify at least 67% of

the validation pixels of the classes ‘dense coniferous’,

‘mixed’ and ‘broadleaved’ forest correctly, but many

pixels within the class ‘open coniferous’ could not

be classified as such. This especially accounts for the

object-based classification, where 40% of pixels of the

class ‘open coniferous’ remained unclassified. Another

striking difference between the two methods as shown

in Table 4 is the confusion between broadleaved and

mixed forest stands as classified by the object-based

method, since almost 20% of the class ‘broadleaved’

forest has been classified as mixed forest stands.

7.3. Differences in forest stand type maps

During field visits a strong variation between open

coniferous, dense coniferous, broadleaved and mixed

forest stands was observed on the lower parts of the

oversteepened valley slopes in the study area. There-

fore, during the visual evaluation of the classification

results the variation of forest stand types in this

altitudinal zone was firstly evaluated. As shown in

Fig. 9, the map produced by the object-based classi-

fication showed an alternation of mainly broadleaved

and mixed forest stands within this zone, but also some

dense and open coniferous forest stands. The per-pixel

classification resulted in rather large homogeneous

areas.

8. Final discussion

8.1. Accuracy and applicability of derived maps

Results in this study show that object-based classi-

fication compared to per-pixel classification does not

improve the accuracy of Landsat TM derived forest

stand type maps according to the overall accuracies

and the KHAT values. At least, this accounts when

using TM bands 4, 5, and a synthetic band (TM band

4 � TM band 2), all corrected for topography, in

Table 4

Confusion matrix of the best per-pixel and object-based classification, normalised for the amount of pixels within a ground truth class

Validation/ground truth

Dense coniferous

(n ¼ 2632)

Mixed

(n ¼ 2460)

Broadleaved

(n ¼ 1258)

Open coniferous

(n ¼ 1061)

Per-pixel classification

Dense coniferous 0.814 NSa 0.133 0.002 0.132

Mixed 0.101 0.720 NS 0.106 0

Broadleaved 0 0.125 0.737 PPb 0

Open coniferous 0.079 0 0 0.515 PP

Unclassified 0.006 0.022 0.155 0.353

Object-based classification

Dense coniferous 0.787 NS 0.103 0.006 0.155

Mixed 0.126 0.732 NS 0.196 0.030

Broadleaved 0 0.143 0.668 PP 0

Open coniferous 0.050 0 0 0.415 PP

Unclassified 0.037 0.022 0.130 0.400

a No significant difference between both methods at the 0.01 confidence level.
b Per-pixel method significant better at the 0.01 confidence level.
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combination with a DEM. For forest stand type map-

ping in the study area using per-pixel classification,

this dataset provided the most accurate results. This

was not the case for object-based classification, since

a large amount of open coniferous forest stands

could not be classified as such (Table 4). Furthermore,

the object-based classification encountered problems

while separating broadleaved forest stands from

mixed forest stands. This problem could probably

be solved with a more specific training dataset, which

is known to be required for an object-based classifica-

tion as used in this study (Lobo and Chic, 1996). A

specific training dataset for object-based classification

might provide a better combination of TM bands and

additional data. On the basis of such a dataset, the

separation of the classes ‘broadleaved’ and ‘mixed’

forest could most likely be improved.

Despite lower accuracies, object-based classifica-

tion compared to per-pixel classification does improve

the applicability of Landsat TM-based forest stand

type maps. More specifically, the forest stand type

map produced by the object-based classification

showed more agreement with the field situation than

the map produced by the per-pixel classification.

Local foresters working in the study area confirmed

this. The object-based map produced a strong varia-

tion in forest stand types as observed on the lower

parts of the oversteepened valley slopes in the study

area. These slopes are transportation zones of snow

avalanches, rockfalls, debris flows and landslides.

Therefore, large variations in mixture, age and tree

distribution exist (Maier, 1993; van Noord, 1996). On

these slopes the per-pixel classification produced large

homogeneous forested areas, which were mainly

determined by altitude. The variation in forest stand

types observed on the oversteepened slope in the study

area was not produced.

Why, then, does object-based classification produce

lower accuracies? One reason is the location of ground

truth polygons in the study area. These polygons were

Fig. 9. Upper image: subset of the forest stand type map produced by the per-pixel classification. Lower image: subset of the forest stand type

map produced by the object-based classification. The central part of the figure shows that per-pixel classification resulted in homogeneous

altitudinal vegetation zones, whereas the object-based classification produced more heterogeneity, especially within the lowest forested

altitudinal zone.
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obtained by digitising large forest stands that are

representative for each classified forest stand type.

But large broadleaved forest stands are rare in the

study area. Smaller broadleaved stands prevail, espe-

cially in areas where the stand type variability is high

as a result of site, growth and disturbance factors.

Therefore, a large set of validation data for the

class ‘broadleaved’ was lacking. Using the DEM as

additional band in the per-pixel classification resulted

in a map showing strongly banded vegetation zones

determined by altitude (Fig. 9). Therefore, the per-

pixel classification performed very well according

to the confusion matrix, since the validation pixels

that were available were generally determined by

altitude.

In the case of object-based classification, many

different forest stand types, in particular within the

lower altitudinal zones, were produced. As a result, the

probability of classified forest stand objects mismatch-

ing ground truth pixels increased. It was observed

that mainly the edges of delineated forest stands

mismatched ground truth pixels (Fig. 10). Obviously,

this led to an increase of the amount of classification

errors and an according decrease of the classification

accuracy. Classification errors were expressed as the

amount of mismatching pixels. Instead, expressing

classification errors as the amount of objects in which

the majority of pixels mismatched ground truth pixels

would be a more suitable method for assessing accu-

racy of object-based classifications. Regarding the

pixel-based accuracy assessment used in this study,

a random sampled ground truth set based on field

inventories would probably have been better. However,

in steep mountainous terrain it is very time and labour

consuming to obtain such a set.

8.2. Knowledge-based classification of objects

The relation between the average object size and the

accuracy of forest stand type maps derived with

object-based classification, indicated that a per-pixel

method is not a good basis for stand type classification.

One reason is that per-pixel classification ignores the

fact that there is a high probability that neighbouring

pixels belong to the same class (Stuckens et al., 2000).

As stated by Woodcock and Harward (1992) the ideal

situation is reached when the image objects corre-

spond with objects in the ground scene. This statement

was confirmed by the results of the object-based

classification of this study. These results showed that

the classification accuracy decreased when using too

small or too large objects. An explanation for this is

that the standard deviation of objects, which was e.g.

used for identifying open coniferous stands, was not

suitable for classifying small objects. If objects were

too large, the standard deviation within an object was

too large to identify pure coniferous stands. Within

this study, an average object size of 21.6 pixels

resulted in the highest accuracy. This size is compar-

able to the average stand size in the study area, which

confirms the statement of Woodcock and Harward

(1992).

If segmentation provides image objects that corre-

spond with objects in the ground scene, then an

intelligent classifier should be able to classify the

image objects perfectly. At present, segmentation

Fig. 10. Left image: hypothetical segmented image objects (black outlined) and a rasterized ground truth polygon (dark grey); centre image:

hypothetical object-based classification result showing two classes (medium grey and light grey); right image: mismatched pixels (indicated

with diagonal pattern) if medium grey class is identical to the ground truth class.
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and object-based classification works very well for

images with spatially discontinuous elements with

abrupt borders such as large agricultural fields or

metropolitan areas surrounded by forests (Stuckens

et al., 2000). In case of segmenting Landsat TM

images of steep forested mountainous terrain into

forest stands, both a sophisticated segmentation pro-

cedure and an intelligent classifier are needed, since

forest stands are elements with gradual and fuzzy

transitions. A sophisticated segmentation procedure

should be able to segment complex, gradual changing

elements in images into realistic objects. Within cur-

rent segmentation and pattern recognition research

such procedures have already been developed and

tested (Ojala and Pietikäinen, 1999). Intelligent clas-

sifiers could be based on membership functions in

combination with an extensive hierarchical or multi-

ple-scale knowledge base (Sowmya and Trinder,

2000) or on neural networks (Pax-Lenney et al., 2001).

9. Conclusions

For Landsat TM-based forest stand types mapping

in the steep mountainous study area, a combination of

a DEM and the TM bands 4, 5 and a synthetic band

(TM band 4 � TM band 2), which were all corrected

for topography, provided the most optimal dataset

when using traditional per-pixel classification. There-

fore, this dataset was used to compare traditional per-

pixel classification with an object-based classification

method. The results from this comparison suggest that

an object-based approach fails to improve the accu-

racy of forest stand type maps in comparison with

traditional per-pixel classification, according to the

overall accuracies and KHAT values. Object-based

classification, however, does improve the applicability

of Landsat TM derived forest stand type maps. The

forest stand type map derived with object-based clas-

sification agreed more with reality than the forest

stand type map derived with per-pixel classification.

The use of a more specific accuracy assessment

method for the object-based classification could prob-

ably quantify this. Alternatively, the use of a random

sampled ground truth set based on field inventories for

accuracy assessment could have resulted in higher

object-based classification accuracies as well. Unfor-

tunately a random sampled ground truth set was not

available, because in steep mountainous terrain it is

very time and labour consuming to obtain such a set.

The relation between the average object size and the

accuracy of forest stand type maps indicated that

object-based classification has substantial potential

for forest stand type mapping on the basis of Landsat

TM. Though, techniques for segmentation and classi-

fication of spatially continuous elements with gradual

transitions in images have to be improved.
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